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Abstract
Structural parameters are the most important factors reflecting structural performance and conditions. As a result, their
identification becomes the most essential aspect of the structural assessment and damage identification for the structural
health monitoring. In this article, a structural parameter identification method based on Monte Carlo method and likeli-
hood estimate is proposed. With which, parameters such as stiffness and damping are identified and studied.
Identification effects subjected to three different conditions with no noise, with Gaussian noise, and with non-Gaussian
noise are studied and compared. Considering the existence of damage, damage identification is also realized by the iden-
tification of the structural parameters. Both simulations and experiments are conducted to verify the proposed method.
Results show that structural parameters, as well as the damages, can be well identified. Moreover, the proposed method
is much robust to the noises. The proposed method may be prospective for the application of real structural health
monitoring.
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Introduction

From the beginning of getting into use, civil engineer-
ing structures face the effect of load, environmental
erosion, material aging, accidental bumping, and
many other factors, which will ultimately lead to
structural damage and destruction.1–3 Based on this
consideration, structure health monitoring (SHM)
technologies have been developed in recent decades to
estimate the actual values of structural parameters
changed due to deterioration or damage of structures
in use.4,5 As the most important part of structural
health monitoring, damage identification includes
four aspects, namely detecting the existence, the loca-
tion, the severity of structural damage, and service life
of the structures.6–9 Most damage identification

judges the existence and degree of damage by compar-
ing structural parameters’ change rules or differences
before and after the damage occurs.10,11 Structural
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parameter identification plays an important role in
the damage identification of structures.

For parameters identification, it is common to
define the vibratory characteristics of a structure with
the parameter of mass, damping, and stiffness.12 Many
researchers have made a lot of efforts in the identifica-
tion of structural parameters with different methods
such as Bayesian network, Kalman filter, Likelihood
estimation.13–18 Udwadia et al.19 put forward that the
stiffness and damping of a building story can be
uniquely identified with the conditions of the recorded
absolute accelerations. Takewaki and Nakamura20

taken advantage of the limited earthquake records and
the knowledge of the floor masses to identify the stiff-
ness and damping of building structures. D’Amore
et al.21 investigated the capability of input–output sys-
tem identification methods, using Kalman filter to
identify dynamic characteristics of typical office build-
ing structures subjected to strong ground motion.
There is no doubt, identifying the physical parameters
of structures is the most direct and efficient way for the
health monitoring of structures.

In this study, a structural parameter identification
method based on Monte Carlo Method and likelihood
estimate is proposed. Identification effect and its
robustness to different types and levels of noises will be
studied in detail. Structural damage identification will
also be studied with the proposed method.

Basic principal of parameter identification

Monte Carlo method, also called statistical experimen-
tal method, is based on the probability definition that
the probability of an event can be estimated from the
frequency of occurrence of the event in a large number
of trials. In order to identify the structural parameters
such as stiffness k and damping c, we could randomly
pick n groups of stiffness ki and damping ci in their dis-
tribution ranges, then compare the calculated responses
with the observed responses. The structure model rep-
resented by certain parameters will be regarded as the
identified one if the calculated responses under such
parameters can match the best with the observed
responses which are from the actual target structure.
At the meantime, such parameters are regarded as the
identified ones of the target structure. This structural
parameter identification method is based on Monte
Carlo method and the accurate probability will be
larger when n tends to increase.

To compare the observed response and calculated
response, we here apply the concept of maximum likeli-
hood value. Through the likelihood function in statis-
tics shown in equations (1)–(3), the likelihood value of
each sample can be achieved. The sample with the max-
imum likelihood can be identified as well and we

assume this sample to be the predicted sample. This
also means that the difference between observed and
calculated response reaches the minimum when the
likelihood value reaches the maximum. Combining
Monte Carlo method and maximum likelihood value,
stiffness ki and damping ci nearest to the actual value
of stiffness k0 and the actual value of damping c0,
therefore, can be identified as the true values.
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Based on such consideration, we proposed to realize
the parameter identification with the Monte Carlo
method and likelihood estimates. For an unknown tar-
get structure, proper parameters such as stiffness and
damping will be selected for identification. Then proper
sampling range is also needed to be determined. After
sampling, dynamic responses under the same excitation
of the target structure will be calculated under each
sample case. Likelihood will be calculated between the
calculated responses and the observed ones from the
target structure. Finally, maximum likelihood will be
selected and corresponding parameters (samples)
become the identified parameters. The flowchart of the
mechanism is shown in Figure 1.

Figure 1. Flowchart of the parameter identification approach.
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Numerical simulation of structural
parameter identification

Single- and multiple-degree-of-freedom structure model

As the most basic and simplest system, single-degree-
of-freedom (SDOF) linear system is the basis of multi-
degree system, continuous system, and nonlinear
system in vibration analysis. Many practical problems
can be simplified to SDOF linear system to deal with.
A SDOF linear structure is shown in Figure 2.

The SDOF structure in Figure 2 is adopted with
some basic assumptions that the foundation is rigid
and the structure is elastic, so the horizontal motion of
the whole structure is consistent. €xg(t) is the horizontal
ground acceleration of Kobe earthquake.

The initial parameters of the structure in Figure 2
are assumed as mass m0 = 400 kg, stiffness k0 =
2500 N/m, damping ratio j = 0:05. The damping coef-
ficient is supposed to be c0 = 2

ffiffiffiffiffiffiffiffiffiffi
m0k0

p
j = 100Ns=m.

At the beginning, the displacement and velocity of the
structure are both zero. Using €xg(t) as the input accelera-
tion at the base and its time-history curve is illustrated in
Figure 3.

However, for many practical structures, it is not
enough to be simplified in SDOF system for analysis.

They are usually described in multi-degree-of-freedom
(MDOF) structures. In this paper, multi-degree struc-
tures are considered as the following model in Figure 4.

Structural parameter identification without noise

As an example, n groups of stiffness ki and damping ci
are randomly taken according to equations (4) and (5),
where randi is a function to produce a uniform distribu-
tion of pseudo random integers. When n = 1000,
structural parameters’ (stiffness ki and damping ci) dis-
tribution is shown in Figure 5

ki;randi n, 1500, 3000½ �ð Þ i= 1, 2, . . . , n ð4Þ

ci;randi n, 20, 120½ �ð Þ i= 1, 2, . . . , n ð5Þ

During the earthquake, horizontal ground motion
will cause the vibration of the upper structure, we can
get n groups of time–history curve of displacement
response xi(t), velocity response _xi(t), and acceleration
response €xi(t) from n groups of different ki and ci. The
time step is taken as 0.02 s

Figure 2. Lumped-mass single-degree-of-freedom structure
under translational motion: (a) structure is subjected to the
earthquake motion and has the inertia force at the mass point
and (b) structure vibrates and has displacement at mass point.

Figure 3. Time-history curve of Kobe earthquake’s horizontal
acceleration.

Figure 4. Multiple-degree-of-freedom structure model.

Figure 5. Structural parameters’ distribution of initial
predicted sample points.
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m€x(t)+ ci _x(t)+ kix(t)= � m€xg(t) ð6Þ

Based on the actual parameters k0 and c0, time–
history curves of displacement response x0(t), velocity
response _x0(t), and acceleration response €x0(t) can also
be achieved through equation (6) and considered as the
observed value. Through the maximum likelihood func-
tion in statistics, likelihood value of each sample point
can be calculated in the time interval and the sample
with the maximum likelihood value tends to be the pre-
dicted sample. This also means that the ki and ci nearest
to k0 and c0 can be identified.

The likelihood value of 1000 samples can be calcu-
lated separately on the basis of displacement, velocity,
and acceleration response. The calculated likelihood
values based on the acceleration response are shown in
Figure 6.

In Figure 6, the marked point is supposed to be the
point with the maximum likelihood value. The horizon-
tal and vertical ordinates respectively indicate the sam-
ple number and the maximum likelihood value.

The results of noiseless SDOF structural parameters
(stiffness k and damping c) based on maximum likeli-
hood estimation are shown in Table 1. According to
the results, dynamic time-history curves of the identi-
fied parameters (stiffness ks and damping cs) and true
values (stiffness k0 and damping c0) can be drawn.

More samples are chosen. For example, n = 2000,
final results of noiseless single-degree parameters (stiff-
ness k and damping c) based on maximum likelihood
estimation are shown in Table 2.

Comparing Tables 1 and 2, it is found that the more
samples we generate, the higher accuracy this

identification method would have but the longer time it
would take.

For multi-degree structures, the real parameters are
assumed as follows
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n = 48 samples are chosen and the final results are
shown in Table 3.

For the multi-degree structures, the identification
error tends to become larger than that of the single-
degree structures. This may due to the complexity of
the multi-degree structures.

Structural parameter identification with Gaussian
noise

Gaussian noise is one kind of common noises with the
probability density function corresponding to Gaussian
distribution. Noise with different levels was added to

Table 1. Parameter identification results of the noiseless SDOF
structure (n = 1000).

Parameters True
values

Identification
results

Identification
error (%)

k(N=m) 2500 2494 0.2
c(N s=m) 100 102 2.0

SDOF: single-degree-of-freedom.

Table 2. Parameter identification results of the noiseless SDOF
structure (n = 2000).

Parameters True
values

Identification
results

Identification
error (%)

k(N=m) 2500 2497 0.1
c(N s=m) 100 102 2.0

SDOF: single-degree-of-freedom.

Figure 6. Likelihood value of samples.
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the true values as the observed signal to study their
effect. The observed acceleration signals with 30%
Gaussian noise are illustrated in Figure 7.

The structural parameters of stiffness k and damping
c under different levels of Gaussian noise are identified
and compared. The comparison results are illustrated in
Figures 8 and 9.

From Figures 8 and 9, there is no obvious rule for
the identification of stiffness and damping. This is
mainly because that all the samples are generated ran-
domly while the identification results are influenced by

samples. However, on the whole, it is shown that this
method is not so sensitive to the Gaussian noise, even
when the noise level becomes fairly large, the para-
meters still can be identified without large error. For
multi-degree structures, we choose n = 48 samples and
the final results are shown in Table 4.

Structural parameter identification with non-Gaussian
noise

Non-Gaussian noise can be generated from equation
(7)
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In this equation, r(i) obeys t distribution of which
mean value is 0 and freedom is 3. With the time step of
0.02 s, the time-history curve of r(i) can be illustrated
in Figure 10. xn 2 (i) can be calculated from r(i) and its
time-history curve can also be drawn in Figure 11.

Figure 8. Identification results of stiffness under Gaussian
noise of different levels.

Figure 9. Identification results of damping under Gaussian
noise of different levels.

Table 4. Parameter identification results of the MDOF
structure under Gaussian noise (n = 48).

Parameters to be
identified

True
values

Identification
results

Identification
error (%)

k(N=m) k1 2500 2382 4.7
k2 2500 2520 0.8
k3 2500 2544 1.8
k4 2500 2412 3.5

c(N s=m) c1 100 104.3 4.3
c2 100 97.2 2.8
c3 100 101.3 1.3
c4 100 101.5 1.5

MDOF: multi-degree-of-freedom.

Figure 7. Observed acceleration signals with 30% Gaussian
noise.

Table 3. Parameter identification results of the noiseless
MDOF structure (n = 48).

Parameters True
values

Identification
results

Identification
error (%)

k(N=m) k1 2500 2608 4.3
k2 2500 2419 3.2
k3 2500 2380 4.8
k4 2500 2417 3.3

c(N s=m) c1 100 104.2 4.2
c2 100 96.5 3.5
c3 100 95.9 5.9
c4 100 93.8 6.2

MDOF: multi-degree-of-freedom.
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The structural parameter identification with non-
Gaussian noise of different levels was carried out in
similar to the parameter identification with Gaussian
noise, and the identification results are described in
Figures 12 and 13.

It can be seen from Figures 12 and 13 that the
changes of stiffness and damping have no obvious
rules. For multi-degree structure, we choose n = 48

samples and the final results are shown in Table 5.

Analysis of structural parameter identification after
damage happens

Considering the existence of structural damage, the true
value of stiffness changes from ki = 2500 N/m to
ki = 2000 N/m and damping from ci = 100 N s/m to

ci = 150 N s/m. This is to say, in the time interval of
[25 s, 35 s], ki = 2500 N/m, ci = 100 N s/m and in
the time interval of [35 s, 45 s], ki = 2000 N/m,
ci = 150 N s/m. For single-degree structures, parameter
identification results with no noise are shown in Table 6.

For multi-degree structures, when n = 48, parameter
identification results with no noise are shown in Tables
7 and 8.

Experimental verification

To verify the correctness of the proposed method in
structural parameter identification, as well as the dam-
age identification, experiments are conducted. An alu-
minum frame with four layers is adopted in the
experiments, as shown in Figure 14. The size of each
floor slab is 300 mm 3 200 mm 3 12 mm; the mass
of each floor is m1st = m2nd = m3rd = 2.342 kg. At
each floor, there are four columns. In the experiment,
damages are simulated by replacing a normal column
with a thin column or totally removing that column.
For a normal column, its size is 235 mm 3 40 mm
3 1.5 mm, while the size of a damaged column is
235 mm 3 30 mm 3 1.5 mm, which actually has
6.25% of stiffness decrease compared to the intact one.

Figure 10. Time-history curve of r(i).

Figure 11. Time-history curve of non-Gaussian noise.

Figure 12. Identification results of stiffness under non-
Gaussian noise of different levels.

Figure 13. Identification results of damping under non-
Gaussian noise of different levels.

Table 5. Parameter identification results of the MDOF
structure under non-Gaussian noise (n = 48).

Parameters to
be identified

True
values

Identification
results

Identification
error (%)

k(N=m) k1 2500 2536 1.4
k2 2500 2520 0.8
k3 2500 2503 0.1
k4 2500 2429 2.8

c(N s=m) c1 100 104.6 4.6
c2 100 103.9 3.9
c3 100 99.2 0.8
c4 100 101.2 1.2

MDOF: multi-degree-of-freedom.
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In the experiment, for the convenience, the excita-
tion is using a vibration exciter to produce vertical
force at the top, instead of putting the earthquake
motions at the ground. The vibration exciter is installed
firmly at the top layer of the frame. The total mass of
the vibration exciter is 6.0208 kg, including the moving
part of 0.6 kg. At the lower three floors, there are two
accelerometers deployed at each floor slab. While at
the top floor, one accelerometer is installed at the floor
slab to get the floor acceleration and the other acceler-
ometer is installed on the moving part of the vibration
exciter, from which the exciting force at the top can be
obtained. The acceleration at the moving part in the
experiment can be shown in Figure 15.

In the experiment, totally five structural damage
cases are studied, including one intact case and four
damaged cases with damage occurring at the first or
second stories, as shown in Table 9.

Experimental results considering different damage
cases are shown in Table 9. Through the comparison

Table 6. Damage identification results of the SDOF structure after damage happens.

Time interval [25 s, 35 s] Time interval [35 s, 45 s]

True values Identification results Identification error (%) True values Identification results Identification error (%)

k = 2500 N/m k = 2612 N/m 4.5 k = 2000 N/m k = 1924 N/m 3.8
c = 100 N s/m c = 102.3 N s/m 2.3 c = 150 N s/m c = 167.4 N s/m 1.2

SDOF: single-degree-of-freedom.

Table 7. Stiffness identification results of the MDOF structure after damage happens (n = 48).

Time interval [25 s, 35 s] Time interval [35 s, 45 s]

True values
(N/m)

Stiffness identification
results (N/m)

Stiffness identification
error (%)

True values
(N/m)

Stiffness identification
results (N/m)

Stiffness identification
error (%)

k1 = 2500 k1 = 2562 2.5 k1 = 2000 k1 = 1992 0.4
k2 = 2500 k2 = 2593 3.7 k2 = 2000 k2 = 2049 2.5
k3 = 2500 k3 = 2541 1.6 k3 = 2000 k3 = 1913 4.4
k4 = 2500 k4 = 2466 1.4 k4 = 2000 k4 = 2047 2.4

MDOF: multi-degree-of-freedom.

Table 8. Damping identification results of the MDOF structure after damage happens (n = 48).

Time interval [25 s, 35 s] Time interval [35 s, 45 s]

True values
(N s/m)

Damping identification
results (N s/m)

Damping identification
error (%)

True values
(N s/m)

Damping identification
results (N s/m)

Damping identification
error (%)

c1 = 100 c1 = 106.2 6.3 c1 = 150 c1 = 154.9 3.3
c2 = 100 c2 = 103.9 3.9 c2 = 150 c2 = 147.3 1.8
c3 = 100 c3 = 101.1 1.1 c3 = 150 c3 = 145.3 3.1
c4 = 100 c4 = 100.9 0.9 c4 = 150 c4 = 153.6 2.4

MDOF: multi-degree-of-freedom.

Figure 14. Test models and the distribution of acceleration
sensors.
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between the identified stiffness values and the real ones
under different damage cases, the proposed method is
proved to be very accurate and effective. Damages can
be well detected and well quantified, which is very use-
ful for the structural health monitoring.

Conclusion

Parameter identification of the SDOF and MDOF
structures under no noise, Gaussian noise, and non-
Gaussian noise of different levels are studied and dis-
cussed. Through the comparison, it can be found that
the proposed method can help to identify the structural
parameters. With the increase of sample numbers, the
error of structural parameter identification decreases.
The structural parameter identification based on Monte

Carlo method and likelihood estimation shows favor-
able anti-noise performance. Unless the level of noise
reaches a certain degree, the identification results seem
to be robust to the noise.

Considering the existence of structural damage, the
identification results show the good consistency with
the present actual status of the structure. Through the
comparison with the true values of parameters in the
experiments, the stiffness identification results of each
floor in the aluminum frame under different damage
cases show the good performance and effectiveness of
the proposed method in structural damage detection
and evaluation. The proposed method is found to be
effective in identifying the parameters such as stiffness
and damping of structures, with high accuracy and sta-
ble performance, which could be well extended and
applied in the identification of actual damaged
structures.
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