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A B S T R A C T

Evidence theory, with its powerful features for uncertainty analysis, provides an alternative to probability
theory for representing epistemic uncertainty, which is an uncertainty in a system caused by the impreciseness
of data or knowledge that can be conveniently addressed. However, this theory is time-consuming for most
applications because of its discrete property. This article describes an adaptive sub-interval perturbation-based
computational strategy for representing epistemic uncertainty in structural dynamic analysis with evidence
theory. The possibility of adopting evidence theory as a general tool for uncertainty quantification in structural
transient response under stochastic excitation is investigated using an algorithm that can alleviate computational
difficulties. Simulation results indicate that the effectiveness of the presented strategy can be used to propagate
uncertainty representations based on evidence theory in structural dynamics.

1. Introduction

Deterministic analysis and design result may not afford resident loss
because of the implication of inherent uncertainty in structural systems
and ground motion. This condition causes researchers to consider
the uncertainty effects of earthquake response on structural systems.
Engineering uncertainties are classified into aleatory and epistemic
according to the nature of uncertain sources [1,2]. Aleatory uncer-
tainty stems from sources that are inherently random (or aleatory) in
engineering or scientific analysis (e.g., properties of non-uniform ma-
terials, manufacturing tolerance, and environmental effects). Epistemic
uncertainty results from incomplete knowledge, ignorance, or modeling
(e.g., simplification of mathematical models of buildings for structural
analysis). In the preliminary stage of uncertainty quantification (UQ),
the randomness of significant loads (e.g., earthquake, wind, and wave.)
has received considerable attention and has been modeled by non-
stationary stochastic processes with good accuracy. Subsequently, the
stochastic response of a deterministic system under random loads is
investigated using the well-established random vibration theory [3–5].
However, as described earlier, not only excited loads demonstrate un-
certainty, but also structural systems. Compared with the randomness of
excited loads, the uncertainty of structural systems is always epistemic
due to incomplete knowledge, ignorance, or modeling.

Probability theory, as a classical UQ theory, has been prevalently im-
plemented to evaluate the uncertain response of dynamic systems with
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uncertain parameters [6]. Preliminary random structural analysis di-
rectly combines the Monte Carlo (MC) sampling method with structural
dynamic analysis to compute the uncertain response of a system [7].
To overcome the high computational cost of brute-force MC simulation,
the spectral method [8,9], perturbation method [10] and its advanced
versions [11], probability density evolution method [12], random factor
method [13], and dynamic variability response functions [14,15] are
implemented in the probabilistic finite element method.

In contrast to the main assumption of classical probability theory, the
perfect knowledge of distribution type and the large amount of statistical
data required to determine the true value of distribution parameters,
real statistical data, and pre-knowledge of uncertainty inherent in a
structural system and environment are always imperfect or unavailable.
This scenario clearly suggests that probability theory is excessively
optimistic but cannot sufficiently emphasize extremes or epistemic
uncertainty. Alternatively, epistemic UQ techniques have been inves-
tigated to model imprecise, vague, fuzzy, ambiguous, and incomplete
variabilities involved in engineering. The most representative theories
are fuzzy set theory [16], possibility theory [17], interval analysis [18],
imprecise probability theory [19] and evidence theory [20,21]. Com-
pared with other theories [22], evidence theory has the most potential
benefit because it has the least restrictive representation framework for
aleatory and epistemic uncertainties. Evidence theory is widely used
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in uncertainty reasoning, data fusion, and decision-making given its
combination rule feature for different uncertainty sources [23].

Although evidence theory has been successfully applied to scientific
analysis and to certain engineering practices, its drawbacks should be
considered. As a promising advantage of evidence theory, uncertain in-
formation is flexibly represented by a series of discrete intervals, which
result in an extreme computational demand in uncertainty propagation
and challenges in its application in complex and large-scale engineering
problems. Potential approaches, such as the revised multi-point approx-
imation [24], combination of Latin hypercube sampling and nonpara-
metric regression-based response surface approximations [25], radial
basis function-based surrogate model [26], intelligent optimization
algorithm [27], and point-collection method [28], have been developed
to improve the practical application of evidence theory in the last
decades, thereby successfully alleviating the excessive computational
costs of large-scale applications and the repetitive simulations required
for evidential uncertainty propagation.

Despite the enthusiasm for static or quasi-static problem, the afore-
mentioned methods will result in considerable computational and time
costs in history analysis. When the computational burden involved
in a time-variant dynamic system is considered, the perturbation
method combined with precise time integration is adopted to handle
the slight fluctuation of uncertain variables in an uncertain dynamic
system [29,30]. Representative investigations in this area have been ex-
plored. For example, Rao et al. [31] used the adaptive Taylor first-order
expansion and direct optimization, which combines the interval finite
element approach and fuzzy formalism to obtain the transient response
of the structure with uncertain parameters. Muscolino et al. [32,33]
extended first-order perturbation with affine arithmetic to cope with
upper and lower bound structural dynamic responses under stationary
and non-stationary excitations with a slight fluctuation in uncertain
structural parameters. Qiu et al. [34] proposed sub-interval measures
to enhance the capability for addressing large uncertainty levels in per-
turbation analysis. Zhou et al. [35] introduced the sub-interval method-
ology into interval perturbation to deal with large uncertainties in an
uncertain system. Xia et al. used sub-interval and modified sub-interval
perturbations to quantify the uncertainty in the static response analyses
of structures [36] and structural–acoustic systems [37], respectively.
Wang et al. [38] proposed two types of sub-interval perturbation method
(SPM) to solve the problem of uncertain heat conduction with large
fuzzy parameters. Yin et al. [39] implemented SPM into UQ for mid-
frequency analysis with evidence theory. Despite several preliminary
studies on SPM in static problems, SPM-based evidential UQ in structural
dynamic problems has not yet been explored.

The application of SPM-based evidential UQ to structural dynamics
problems appears interesting and promising based on the characteristics
of such problems. However, the computational accuracy of classical
SPM is improved by sacrificing computational efficiency due to the
use of a crude mesh for sub-intervals in perturbation, which leads to
an exponential increase in computational cost. To alleviate the compu-
tational consumption of classical SPM in non-probabilistic uncertainty
analysis, a sensible adaptive strategy is proposed in this work to reduce
the dimensions of a system with uncertain input and to construct a
reasonable combination of sub-intervals in the joint focal element.

The remaining parts of this paper are organized as follows. Section 2
presents an evidential UQ framework for investigating the variance of
the displacement response of a dynamic system under stochastic excita-
tion. Section 3 explains the adaptive sub-interval perturbation method
(ASPM)-based uncertainty propagation in UQ of the structural transient
response under stochastic excitation. Section 4 provides the uncertainty
measurement for the transient response of a dynamic system. Section 5
summarizes the evidential UQ framework with ASPM. Two illustrative
examples are presented in Section 6 to investigate the effectiveness and
accuracy of the proposed method. Section 7 provides the conclusion of
this work.

2. Epistemic uncertainty represented by evidence theory in a dy-
namic system under stochastic excitation

Without losing generality, the motion equation of a multiple degree
of freedom system (MDOF) under nonstationary random excitation is
expressed as

𝐌 (𝜶) 𝐮̈ (𝜶,𝝎, 𝑡) + 𝐂 (𝜶) 𝐮̇ (𝜶,𝝎, 𝑡) +𝐊 (𝜶)𝐮 (𝜶,𝝎, 𝑡) = 𝐟 (𝜶,𝝎, 𝑡) , (1)

whereM(𝜶), C(𝜶), and K(𝜶) respectively denote the mass, damping, and
stiffness matrices of a structural system with 𝛤 × 𝛤 elements. 𝐮̈ (𝜶,𝝎, 𝑡),
𝐮̇ (𝜶,𝝎, 𝑡) and 𝐮 (𝜶,𝝎, 𝑡) are the vectors of acceleration, velocity, and dis-
placement, respectively, of a structural system. 𝐟 (𝜶,𝝎, 𝑡) is zero-mean-
valued nonstationary random excitation vector with 𝛤 × 1 elements.
The parameter collection 𝜶 =

[

𝛼1, 𝛼2,… , 𝛼𝑁
]T is used to characterize

the mutually independent uncertain parameters of a structural system,
where N denotes the number of parameters of a structural system with
epistemic uncertainty and the symbol T denotes the transpose operator
of the matrix. Based on the concept of pseudo-excitation method [3,5],
the random excitation 𝐟 (𝜶,𝝎, 𝑡) can be rewritten as a series of pseudo
harmonic excitations:

𝐟 (𝜶,𝝎, 𝑡) =
𝐺
∑

𝑔=1
vec

(

𝐌 (𝜶)𝐄𝑚

√

𝑆
(

𝜔𝑔 , 𝑡
)

exp
(

𝑖𝜔𝑔𝑡
)

)

(2)

where E𝑚 is the identity matrix; 𝑆
(

𝜔𝑔 , 𝑡
)

is the component of time
variant power spectral density 𝐒 (𝝎, 𝑡); G is the number of discrete
frequency intervals and 𝑖 =

√

−1 is the imaginary unit. The response
statistics for the displacement 𝑢𝜏 (𝜶,𝝎, 𝑡) , 𝜏 ∈ ∀ [1, 𝛤 ] is considered as the
response quantities of interest. The time variant power spectral density
of 𝑢𝜏 (𝜶,𝝎, 𝑡) is given as:

𝐒𝑢𝜏𝑢𝜏 (𝜶,𝝎, 𝑡) = 𝑢∗𝜏 (𝜶,𝝎, 𝑡) 𝑢𝜏 (𝜶,𝝎, 𝑡) (3)

where ∗ indicates the complex conjugate operator. Then, the auto-
covariance function of 𝑢𝜏 (𝜶,𝝎, 𝑡) can be depicted as the product of an
integration in the frequency field:

𝐷𝑢𝜏𝑢𝜏 (𝜶, 𝑡) = 2 × 𝛥𝜔
𝐺
∑

𝑔=1
𝑢∗𝜏

(

𝜶, 𝜔𝑔 , 𝑡
)

𝑢𝜏
(

𝜶, 𝜔𝑔 , 𝑡
)

𝜏 ∈ ∀[1, 𝛤 ], (4)

The Eq. (4) shows that the uncertainties of 𝐷𝑢𝜏𝑢𝜏 (𝜶, 𝑡) is dependent on
the uncertain structural parameter vector 𝜶. Therefore, the probabilistic
result of 𝐷𝑢𝜏𝑢𝜏 (𝜶, 𝑡) is conditioned by precise probabilistic model of
uncertain parameters 𝜶. By contrast, the fragment and incomplete un-
certain information of 𝜶 will produce epistemic UQ results of 𝐷𝑢𝜏𝑢𝜏 (𝜶, 𝑡).

Evidence theory [20,21] is used in this study to address epistemic
uncertainty involved in structural parameters. In [20,21], the evidential
expression of each component 𝛼𝑛 (𝑛 ∈ ∀[1, 𝑁]) in the uncertain structural
property vector 𝜶 is built as the combination of focal element 𝛼I𝑛 and the
corresponding basic belief assignment (BBA) 𝑚𝑛,𝑗𝑛 as follows:
{

𝜶I
𝑛,𝑗𝑛

, 𝑚𝑛,𝑗𝑛

}

=
{[

𝛼𝑛,𝑗𝑛 , 𝛼𝑛,𝑗𝑛
]

, 𝑚𝑛,𝑗𝑛

}

𝑗𝑛 ∈ ∀[1, 𝐽𝑛] 𝑛 ∈ ∀[1, 𝑁], (5)

where 𝛼𝑛,𝑗𝑛 and 𝛼𝑛,𝑗𝑛 are the lower and upper bounds, respectively, of
the 𝑗𝑛th focal element 𝛼I𝑛,𝑗𝑛 of the uncertain component 𝛼𝑛; and 𝐽𝑛 is the
number of focal element of 𝛼𝑛. As the basic measure in evidence theory,
the BBA 𝑚𝑛,𝑗𝑛 express the degree of assignment belief of a proposition
and satisfy with followings:
{

𝑚𝑛,𝑗𝑛 ≥ 0 𝜶I
𝑛,𝑗𝑛

⊂ 𝛺 and 𝜶I
𝑛,𝑗𝑛

∈ 𝛩

𝑚𝑛,𝑗𝑛 = 0 𝜶I
𝑛,𝑗𝑛

⊂ 𝛺 and 𝛼I𝑛,𝑗𝑛 ∈ 𝛩
, (6)

∑

𝑚𝑛,𝑗𝑛 = 1 𝛼I𝑛, 𝑗𝑛
∈ 𝛩, (7)

where Ω is the discernment frame used to denote the entire collection
of mutually exclusive and exhaustive possible elementary propositions
in evidence theory, and Θ = 2Ω is the countable power set to support
BBA as a mapping, 𝑚 ∶ Θ → [0, 1], for a meaningful proposition. When
evidence theory is used to model the uncertain parameter vector 𝜶, the
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uncertain input of system function is built by the Cartesian product as
follows:
{

𝜶I
𝑞 , 𝑚𝑞

}

=
{(

𝛼I1,𝑗1 , 𝑚1,𝑗1

)

,… ,
(

𝛼I𝑛,𝑗𝑛 , 𝑚𝑛,𝑗𝑛

)

,… ,
(

𝛼I𝑁,𝑗𝑁
, 𝑚𝑁,𝑗𝑁

)}

,

𝑗𝑛 ∈ ∀[1, 𝐽𝑛], 𝑛 ∈ ∀[1, 𝑁], 𝑞 ∈ ∀[1,
𝑁
∏

𝑛=1
𝐽𝑛], (8)

𝑚𝑞 =
𝑁
∏

𝑛=1
𝑚𝑛,𝑗𝑛 , 𝑗𝑛 ∈ ∀[1, 𝐽𝑛], 𝑛 ∈ ∀[1, 𝑁], 𝑞 ∈ ∀[1,

𝑁
∏

𝑛=1
𝐽𝑛], (9)

where ∏𝑁
𝑛=1𝐽𝑛 is the number of joint focal elements. On the basis of

the aforementioned definition, the evidential expression of 𝐷𝑢𝜏𝑢𝜏 (𝜶, 𝑡) is
given as
{[

𝐷𝑢𝜏𝑢𝜏
(𝜶I

𝑞 , 𝑡), 𝐷𝑢𝜏𝑢𝜏 (𝜶
I
𝑞 , 𝑡)

]

, 𝑚𝑞

}

=
{

[min
(

𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

))

,max
(

𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

))

], 𝑚𝑞

}

,

𝑞 ∈ ∀[1,
𝑁
∏

𝑛=1
𝐽𝑛], (10)

where 𝐷𝑢𝜏𝑢𝜏
(𝜶I

𝑞 , 𝑡) and 𝐷𝑢𝜏𝑢𝜏 (𝜶
I
𝑞 , 𝑡) are used to denote the lower and

upper bounds, respectively, of 𝐷𝑢𝜏𝑢𝜏 (𝜶
I
𝑞 , 𝑡). min(∙) and max(∙) represent

the operators for searching for the minimum and maximum values of
the investigated problems. Evidently, the computation cost of Eq. (10) is
mainly dependent on the number of ∏𝑁

𝑛=1𝐽𝑛 in a given dynamic system.
To alleviate the computational burden of the evidential uncertainty
propagation of Eq. (10), the adaptive sub-interval strategy is introduced
into the perturbation method based on the first-order Taylor expansion.

3. Evidential uncertainty propagation with adaptive strategy

Uncertainty propagation is the most critical stage of UQ. In this
section, the major concepts of interval perturbation, sub-interval strat-
egy and the adaptive dimension reduction methodology are introduced.
Moreover, the numerical evaluation of ASPM is summarized.

3.1. Assessment of evidential response using the interval perturbation method

As discussed in the previous section, the propagation of 𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

)

may result in the dimensional curse due to the increment in the number
of focal elements. To alleviate computational burden, interval perturba-
tion analysis is performed to propagate the uncertainty in 𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

)

.
When a similar definition of interval perturbation analysis is adopted, 𝜶c

𝑞
and Δ𝜶𝑞 are called the nominal value and deviation radius, respectively,
of the joint focal element 𝜶I

𝑞 .

𝜶c
𝑞 = vec

(

𝜶1,𝑗1
+ 𝜶1,𝑗1

2
,… ,

𝜶𝑛,𝑗𝑛
+ 𝜶𝑛,𝑗𝑛

2
,… ,

𝜶𝑁,𝑗𝑁
+ 𝜶𝑁,𝑗𝑁

2

)

𝑞 ∈ ∀[1, 𝑄] 𝑗𝑛 ∈ ∀[1, 𝐽𝑛] 𝑛 ∈ ∀[1, 𝑁], (11)

𝛥𝜶𝑞 = vec

(

𝛼1,𝑗1 − 𝛼1,𝑗1
2

,… ,
𝛼𝑛,𝑗𝑛 − 𝛼𝑛,𝑗𝑛

2
,… ,

𝛼𝑁,𝑗𝑁 − 𝛼𝑁,𝑗𝑁
2

)

𝑞 ∈ ∀[1, 𝑄] 𝑗𝑛 ∈ ∀
[

1, 𝐽𝑛
]

𝑛 ∈ ∀[1, 𝑁], (12)

where 𝛼𝑛,𝑗𝑛 and 𝛼𝑛,𝑗𝑛 are the lower and upper bounds, respectively, of
component 𝛼I𝑛,𝑗𝑛 in joint focal element 𝛼I𝑞 ; and 𝑄 =

∏𝑁
𝑛=1𝐽𝑛 is the number

of joint focal elements. When the first-order Taylor series expansion is
used, the values of 𝐷𝑢𝜏𝑢𝜏

(𝜶I
𝑞 , 𝑡) and 𝐷𝑢𝜏𝑢𝜏 (𝜶

I
𝑞 , 𝑡) are given as

𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

)

= 𝐷𝑢𝜏𝑢𝜏

(

𝜶c
𝑞 , 𝑡

)

−
𝑁
∑

𝑛=1

|

|

|

|

𝜕𝐷𝑢𝜏𝑢𝜏

(

𝜶c
𝑞 , 𝑡

)

∕𝜕𝛼𝑛
|

|

|

|

𝛥𝛼𝑛,𝑗𝑛 , (13)

𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

)

= 𝐷𝑢𝜏𝑢𝜏

(

𝜶c
𝑞 , 𝑡

)

+
𝑁
∑

𝑛=1

|

|

|

|

𝜕𝐷𝑢𝜏𝑢𝜏

(

𝜶c
𝑞 , 𝑡

)

∕𝜕𝛼𝑛
|

|

|

|

𝛥𝛼𝑛,𝑗𝑛 , (14)

where

𝐷𝑢𝜏𝑢𝜏

(

𝜶c
𝑞 , 𝑡

)

= 2𝛥𝜔
𝐺
∑

𝑔=1
𝑢𝜏

(

𝜶c
𝑞 , 𝜔𝑔 , 𝑡

){

𝑢𝜏
(

𝜶c
𝑞 , 𝜔𝑔 , 𝑡

)}∗
, (15)

𝜕𝐷𝑢𝜏𝑢𝜏

(

𝜶c
𝑞 , 𝑡

)

∕𝜕𝜶𝑛 = 4𝛥𝜔
𝐺
∑

𝑔=1

{

𝜕𝑢𝜏
(

𝜶c
𝑞 , 𝜔𝑔 , 𝑡

)

∕𝜕𝛼𝑛
}{

𝑢𝜏
(

𝜶c
𝑞 , 𝜔𝑔 , 𝑡

)}∗
,

(16)

and |∙| denotes the absolute value operator. In the interval perturbation
analysis, the value of 𝜕𝐷𝑢𝜏𝑢𝜏

(

𝜶c
𝑞 , 𝑡

)

∕𝜕𝛼𝑛 can also be called the sensitivity
index, which is used to indicate the importance of the uncertainty input.
In a well-known notation, the computational accuracy of the first-order
expansion of an interval perturbation based on the Taylor series mainly
relies on a slight fluctuation of uncertain parameters. However, the
uncertainty level in practical engineering is always considerable due
to the incomplete and imprecise uncertain information and knowledge
constraint. Consequently, the uncertainty propagation results based on
interval perturbation may be unacceptable for engineering applications.
To improve the accuracy of the first-order perturbation, an adaptive sub-
interval strategy is presented.

3.2. Sub-interval perturbation method

As discussed in the previous subsection, the accuracy of the first-
order-based Taylor expansion suffers from high-level uncertainty. To
overcome this deficiency, the sub-interval perturbation method is pre-
sented in this section. The component 𝛼I𝑛,𝑗𝑛 of the joint focal element 𝛼I𝑞 is
considered to formulate the sub-interval strategy. When the number of
sub-intervals of each component is 𝑅𝑛, then the 𝑟𝑛th sub-interval (𝛼I𝑛,𝑗𝑛 )𝑟
of 𝛼I𝑛,𝑗𝑛 can be expressed as [34,35,37,38]
(

𝛼I𝑛,𝑗𝑛

)

𝑟𝑛
=
[

𝛼𝑛,𝑗𝑛 + 2
(

𝑟𝑛 − 1
)

𝛥𝛼𝑛,𝑗𝑛∕𝑅𝑛, 𝛼𝑛,𝑗𝑛 + 2𝑟𝑛𝛥𝛼𝑛,𝑗𝑛∕𝑅𝑛

]

𝑟𝑛 ∈ ∀[1, 𝑅𝑛] 𝑗𝑛 ∈ ∀[1, 𝐽𝑛] 𝑛 ∈ ∀[1, 𝑁]. (17)

Thus, the joint sub-interval
(

𝜶I
𝑞

)

𝑙
of the joint focal element 𝛼I𝑞 is deter-

mined by:
(

𝜶I
𝑞

)

𝑙
=
{

(

𝜶I
1,𝑗1

)

𝑟1
,… ,

(

𝜶I
𝑛,𝑗𝑛

)

𝑟𝑛
,… ,

(

𝜶I
𝑛,𝑗𝑁

)

𝑟𝑁

}

𝑞 ∈ ∀[1,
𝑁
∏

𝑛=1
𝐽𝑛], 𝑙 ∈ ∀[1,

𝑁
∏

𝑛=1
𝑅𝑛]. (18)

When two adjacent sub-intervals
(

𝜶I
𝑞

)

𝑙
=

[

(

𝜶I
1,𝑗1

)

𝑟1
,… ,

(

𝜶I
𝑛,𝑗𝑛

)

𝑟𝑛
,… ,

(

𝜶I
𝑁,𝑗𝑁

)

𝑟𝑁

]T
and

(

𝜶I
𝑞

)

𝑙+1
=
[

(

𝜶I
1,𝑗1

)

𝑟1
,… ,

(

𝜶I
𝑛,𝑗𝑛

)

𝑟𝑛+1
,… ,

(

𝜶I
𝑁,𝑗𝑁

)

𝑟𝑁

]T

of the joint focal element 𝜶I
𝑞 are given, the following holds:

𝑢𝜏
((

𝜶I
𝑞

)

𝑙
, 𝜔𝑔 , 𝑡

)

∩ 𝑢𝜏
((

𝜶I
𝑞

)

𝑙+1
, 𝜔𝑔 , 𝑡

)

= 𝑢𝜏
((

𝜶I
𝑞

)

𝑙
∩
(

𝜶I
𝑞

)

𝑙+1
, 𝜔𝑔 , 𝑡

)

,

(19)

in which,
(

𝜶I
𝑞

)

𝑙
∩
(

𝜶I
𝑞

)

𝑙+1
=
[

(

𝜶I
1,𝑗1

)

𝑟1
,… ,

(

𝜶𝑛,𝑗𝑛

)

𝑟𝑛

=
(

𝜶𝑛,𝑗𝑛

)

𝑟𝑛+1
,… ,

(

𝜶I
𝑁,𝑗𝑁

)

𝑟𝑁

]T
. (20)

Then, using Eq. (19), the following conclusion for 𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

)

is
obtained:

𝐷𝑢𝜏𝑢𝜏

((

𝜶I
𝑞

)

𝑙
, 𝑡
)

∩𝐷𝑢𝜏𝑢𝜏

((

𝜶I
𝑞

)

𝑙+1
, 𝑡
)

≠ ∅, (21)

𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

)

= ∪
𝑙∈[1,𝐿𝑞 ]

𝐷𝑢𝜏𝑢𝜏

((

𝜶I
𝑞

)

𝑙
, 𝑡
)

=
[

min
𝑙∈[1,𝐿𝑞 ]

𝐷𝑢𝜏𝑢𝜏

((

𝜶I
𝑞

)

𝑙
, 𝑡
)

, max
𝑙∈[1,𝐿𝑞 ]

𝐷𝑢𝜏𝑢𝜏

((

𝜶I
𝑞

)

𝑙
, 𝑡
)

]

. (22)

where,𝐿𝑞 =
∏𝑁

𝑛=1𝑅𝑛 is the number of sub-intervals in joint focal element
𝜶I
𝑞 . From the aforementioned formulas, the accuracy of the sub-interval
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perturbation strategy is guaranteed by the sufficiently small uncertain
level of the sub-intervals of each uncertain parameter determined by
the reasonable number 𝑅𝑛. However, computational efficiency sharply
decreases with an increase in the number of sub-intervals. Therefore, a
sensible strategy that involves balance between computational precision
and consumption should be proposed.

3.3. Adaptive dimension reduction and subinterval updating strategy

As defined in Eq. (16), the 𝜕𝐷𝑢𝜏𝑢𝜏

(

𝜶c
𝑞 , 𝑡

)

∕𝜕𝛼𝑛 is the sensitivity index
of uncertain variable 𝜶𝑛 in joint focal element 𝛼I𝑞 . For concise, we use
𝐴𝑞

(

𝛼𝑛, 𝑡
)

to denote the 𝜕𝐷𝑢𝜏𝑢𝜏

(

𝜶c
𝑞 , 𝑡

)

∕𝜕𝛼𝑛. The reduction of the system
input dimension is a sensible choice to alleviate the computational
burden of uncertainty propagation. The sensitivity index 𝐴𝑞(𝑎𝑛, 𝑡) is
multiplied by 𝑚𝑞 of 𝜶I

𝑞 ; hence, the new sensitivity index is defined as

𝐴
(

𝛼𝑛, 𝑡
)

=
𝑄
∑

𝑞=1

|

|

|

𝐴𝑞
(

𝛼𝑛, 𝑡
)

|

|

|

× 𝑚𝑞 (23)

where, 𝑄 =
∏𝑁

𝑛=1𝐽𝑛. The nominal sensitivity is defined as Eq. (24) to
represent the relative importance of each uncertain parameter in the
entire time history.

𝐴(𝛼𝑛) = ∫

T

0
𝐴
(

𝛼𝑛, 𝜏
)

× 𝛼0𝑛d𝜏∕
𝑁
∑

𝑛=1
∫

T

0
𝐴
(

𝜶𝑛, 𝜏
)

× 𝜶0
𝑛d𝜏 (24)

where 𝛼0𝑛 is the nominal value of uncertain parameter 𝛼𝑛. Eq. (24) shows
that the product of the 𝐴(𝑎𝑛, 𝑡) and 𝛼0𝑛 is used to avoid the discrepancy
of the physical dimension of each uncertain parameter. The relative
contribution of each uncertain parameter is determined by estimating
the sensitivity index. The higher the value of 𝐴̃(𝛼𝑛), the more important
the contribution of the uncertain parameter, which shall be divided into
more sub-intervals in the uncertainty propagation process. However, a
smaller value of 𝐴̃

(

𝛼𝑛
)

demonstrates the slight influence of 𝛼𝑛 on system
output, which shall be neglected in the uncertainty propagation to save
computational cost. The selection of sub-interval numbers is flexible and
efficient according to the different values of 𝐴̃(𝛼𝑛) for each variable.
After the dimension reduction, the sub-interval updating is employed to
estimate the lower and upper bounds of system response. The strategy
of sub-interval updating is defined as double of current number. The
convergence criterion of ASPM is presented in Section 5, because of
involving evidential uncertainty measurement.

3.4. Numerical evaluation of ASPM

From the aforementioned description of ASPM, the values of
𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

)

and 𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

)

are approximated by 𝐷𝑢𝜏𝑢𝜏

(

(𝜶I
𝑞)lower, 𝑡

)

and 𝐷𝑢𝜏𝑢𝜏

(

(𝜶I
𝑞)upper, 𝑡

)

, where
(

𝜶I
𝑞

)

lower
and

(

𝜶I
𝑞

)

upper
denote the

judicious sub-interval combination of the lower and upper bounds in the
joint focal element 𝛼I𝑞 . Therefore, Eqs. (13) and (14) can be transformed
into

𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

)

= 𝐷𝑢𝜏𝑢𝜏

((

𝜶I
𝑞

)c

lower
, 𝑡
)

−
𝑁
∑

𝑛=1

|

|

|

|

𝜕𝐷𝑢𝜏𝑢𝜏

((

𝜶I
𝑞

)c

lower
, 𝑡
)

∕𝜕𝛼𝑛
|

|

|

|

𝛥𝛼𝑛,𝑗𝑛∕𝑅𝑛 (25)

𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

)

= 𝐷𝑢𝜏𝑢𝜏

(

(

𝜶I
𝑞

)c

upper
, 𝑡
)

+
𝑁
∑

𝑛=1

|

|

|

|

|

𝜕𝐷𝑢𝜏𝑢𝜏

(

(

𝜶I
𝑞

)c

upper
, 𝑡
)

∕𝜕𝛼𝑛
|

|

|

|

|

𝛥𝛼𝑛,𝑗𝑛∕𝑅𝑛 (26)

To estimate the right side of Eqs. (25) and (26), Eq. (1) is rewritten as a
state function as follows:

𝐲̇(𝜶, 𝜔, 𝑡) = 𝐇(𝜶)𝐲(𝜶, 𝜔, 𝑡) + 𝐅(𝜔, 𝑡) (27)

where

𝐲(𝜶, 𝑡) =
[

𝐮 (𝜶, 𝜔, 𝑡)
𝐮̇ (𝜶, 𝜔, 𝑡)

]

,

𝐇 (𝜶) =
[

0 𝐄𝑚
−𝐌−1 (𝜶)𝐊 (𝜶) −𝐌−1 (𝜶)𝐂 (𝜶)

]
(28)

where 𝐄m is the identity matrix, and Eq. (27) is the state function
of the system with uncertain parameters 𝜶. In this study, the time
variant power spectral density of non-stationary stochastic excitation
𝐒 (𝝎) is represented as the product of modulation function 𝑔 (𝑡) and
filtered white noise 𝐒𝒇𝒇 (𝝎). Thus, the stochastic excitation F(𝜔, t) is
characterized as [3,5]:

𝐅 (𝜔, 𝑡) =
[

0 vec
(

𝐄𝑚

√

𝑆𝑓𝑓 (𝜔)𝑔(𝑡) exp (𝑖𝜔𝑡)
)]T

(29)

where vec(∙) is the vectorization of the matrix, 𝑔 (𝑡) is the uniform mod-
ulated envelope function. Evidently, the values of 𝑢𝜏

((

𝜶I
𝑞

)c

lower
, 𝜔𝑔 , 𝑡

)

and 𝑢𝜏

(

(

𝜶I
𝑞

)c

upper
, 𝜔𝑔 , 𝑡

)

are obtained by taking and solving
(

𝜶I
𝑞

)c

lower

and
(

𝜶I
𝑞

)c

upper
into Eq. (27) and using the highly precise direct-

line integration method [3]. Taking the 𝑢𝜏
((

𝜶I
𝑞

)c

lower
, 𝜔𝑔 , 𝑡

)

and

𝑢𝜏

(

(

𝜶I
𝑞

)c

upper
, 𝜔𝑔 , 𝑡

)

into Eq. (15), the values of 𝐷𝑢𝜏𝑢𝜏

((

𝜶I
𝑞

)c

lower
, 𝑡
)

and 𝐷𝑢𝜏𝑢𝜏

(

(

𝜶I
𝑞

)c

upper
, 𝑡
)

are obtained. Moreover, the values of

𝜕𝑢𝜏
((

𝜶I
𝑞

)c

lower
, 𝜔𝑔 , 𝑡

)

∕𝜕𝛼𝑛 and 𝜕𝑢𝜏

(

(

𝜶I
𝑞

)c

upper
, 𝜔𝑔 , 𝑡

)

∕𝜕𝛼𝑛 are evaluated

by replacing 𝜶 with
(

𝜶I
𝑞

)c

lower
and

(

𝜶I
𝑞

)c

upper
in the following expression:

𝜕𝐲̇(𝜶, 𝜔, 𝑡)
𝜕𝜶𝑛

= 𝐇(𝜶)
𝜕𝐲(𝜶, 𝜔, 𝑡)

𝜕𝜶𝑛
+

𝜕𝐇(𝜶)
𝜕𝜶𝑛

𝐲(𝜶, 𝜔, 𝑡) + 𝜕𝐅 (𝜔, 𝑡)
𝜕𝜶𝑛

(30)

where

𝜕𝐲 (𝜶, 𝜔, 𝑡)
𝜕𝜶𝑛

=

⎡

⎢

⎢

⎢

⎣

𝜕𝐮̇ (𝜶, 𝜔, 𝑡)
𝜕𝜶𝑛

𝜕𝐮 (𝜶, 𝜔, 𝑡)
𝜕𝜶𝑛

⎤

⎥

⎥

⎥

⎦

𝜕𝐇 (𝜶)
𝜕𝜶𝑛

=
⎡

⎢

⎢

⎣

0 0
𝜕𝐇3 (𝜶)
𝜕𝜶𝑛

𝜕𝐇4 (𝜶)
𝜕𝜶𝑛

⎤

⎥

⎥

⎦

(31)

𝜕𝐇3 (𝜶)
𝜕𝜶𝑛

= −
𝜕𝐌−1 (𝜶)

𝜕𝜶𝑛
𝐊 (𝜶) −𝐌−1 (𝜶)

𝜕𝐊 (𝜶)
𝜕𝜶𝑛

(32)

𝜕𝐇4 (𝜶)
𝜕𝜶𝑛

= −
𝜕𝐌−1 (𝜶)

𝜕𝜶𝑛
𝐂 (𝜶) −𝐌−1 (𝜶)

𝜕𝐂 (𝜶)
𝜕𝜶𝑛

(33)

The value of 𝜕𝐷𝑢𝜏𝑢𝜏

((

𝛼I𝑞
)c

lower
, 𝑡
)

∕𝜕𝛼n is calculated by substituting

the obtained 𝜕𝑢𝜏
((

𝛼I𝑞
)c

lower
, 𝜔𝑔 , 𝑡

)

∕𝜕𝜶n and 𝑢𝜏
((

𝜶I
𝑞

)c

lower
, 𝜔𝑔 , 𝑡

)

into

Eq. (16). The value of 𝜕𝐷𝑢𝜏𝑢𝜏

(

(

𝜶I
𝑞

)c

upper
, 𝑡
)

∕𝜕𝛼n is given using the

same operation. Then, the lower and upper bounds of 𝐷𝑢𝜏𝑢𝜏

(

𝜶I
𝑞 , 𝑡

)

are
obtained using Eqs. (25) and (26).

4. Uncertainty measurement for the transient response of a dy-
namic system

After the uncertainty propagation step, the lower and upper response
bounds of the system response for each joint focal element 𝜶I

𝑞 are
obtained. Evidence theory uses the belief (Bel) and plausibility (Pl)
measures to characterize uncertainty by indicating the confident degree
to determine whether an event is true or false. Similar to the previous
sections, we set sample 𝑥 ∈ 𝛺 and 𝐴𝑘 =

[

𝑎𝑘,𝑎𝑘,
]

𝑘 ∈ ∀[1, 𝐾] is the
proposition in power set 𝛩, and 𝑚𝑘 is the BBA of proposition 𝐴𝑘. Given
subset 𝐿𝑥 =

{

𝑥|𝑥 ∈ 𝛺,−∞ ≤ 𝑥 ≤ 𝑥thre
}

, Bel (𝐿𝑥) and Pl (𝐿𝑥) can be built
using the belief cumulative distribution function (BCDF) proposed by
Yager [40] and Durante [41]:

𝐵𝑒𝑙
(

𝐿𝑥
)

=
∑

𝑎𝑘≤𝑥thre

𝑚𝑘 (34)
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Fig. 1. Flowchart of evidential UQ using ASPM.

𝑃 𝑙
(

𝐿𝑥
)

=
∑

𝑎𝑘≤𝑥thre

𝑚𝑘 (35)

in which, Bel (𝐿𝑥) and Pl (𝐿𝑥) are also called the cumulative belief
function (CBF) and the cumulative plausibility function (CPF). Then,
the complete expression for the BCDF of 𝑥thre holds:

𝐹𝑚
(

𝑥thre
)

=
[

𝐵𝑒𝑙
(

𝐿𝑥
)

, 𝑃 𝑙(𝐿𝑥)
]

(36)

Given a designated BCDF, 𝐹𝑚
(

𝑥thre
)

= [𝐵𝑒𝑙
(

𝐿𝑥
)

, 𝑃 𝑙(𝐿𝑥)], the lower
and upper bounds of 𝑥thre, corresponding to a threshold exceedance
probability 𝑝thre is obtained as:
[

𝑥thre, 𝑥thre
]

=
[

𝑃 𝑙−1(𝑝thre), 𝐵𝑒𝑙−1(𝑝thre)
]

(37)

In stochastic dynamic analysis, given the propagated focal elements and
associated belief structure of the variance response of interesting dis-
placement

([(

𝐷𝑢𝜏𝑢𝜏

)

1
,
(

𝐷𝑢𝜏𝑢𝜏

)

1

]

, 𝑚1

)

,… ,
([

(

𝐷𝑢𝜏𝑢𝜏

)

𝑞
,
(

𝐷𝑢𝜏𝑢𝜏

)

𝑞

]

, 𝑚𝑞

)

,

⋯ ,
([

(

𝐷𝑢𝜏𝑢𝜏

)

𝑄
,
(

𝐷𝑢𝜏𝑢𝜏

)

𝑄

]

, 𝑚𝑄

)

the lower and upper bounds of
(

𝐷𝑢𝜏𝑢𝜏

)

thre
for 𝑝thre can be constructed using the following expression:

[(

𝐷𝑢𝜏𝑢𝜏

)𝑝thre
,
(

𝐷𝑢𝜏𝑢𝜏

)𝑝thre]

=
[

𝑃 𝑙−1(𝑝thre), 𝐵𝑒𝑙−1(𝑝thre)
]

(38)

Evidently, the distances of
(

𝐷𝑢𝜏𝑢𝜏

)𝑝thre
and

(

𝐷𝑢𝜏𝑢𝜏

)𝑝thre
in Eq. (38)

represent the knowledge and completeness levels of the uncertain
information for structural parameter 𝜶. The tight ranges of

(

𝐷𝑢𝜏𝑢𝜏

)𝑝thre

and
(

𝐷𝑢𝜏𝑢𝜏

)𝑝thre
suggest the complete uncertain information and perfect

knowledge of 𝜶 with minimal epistemic and vice versa.

5. Summary of evidential UQ with ASPM

To sum up above mentioned sections, the uncertainty propagation
using ASPM is addressed in the evidential UQ framework. The adap-
tive scheme for sub-interval perturbation consists of three stages: the
dimensional reduction using the global sensitivity analysis, sub-interval
updating and convergence estimation. The convergence criterion is
constructed by using the maximum of relative error of

(

𝐷𝑢𝜏𝑢𝜏

)0.5
and

(

𝐷𝑢𝜏𝑢𝜏

)0.5
corresponding to the former and latter iterations. To illustrate

Fig. 2. Three DOF system.

Table 1
Focal elements and belief structure of variables.

K (kN/m) M (kg)

Focal element BBA Focal element BBA

[13 600, 16 000] 0.2 [8000, 9500] 0.15
[15 200, 16 800] 0.6 [9000, 10 000] 0.35
[16 000, 18 400] 0.2 [10 000, 11 000] 0.35

[10 500, 12 000] 0.15

the evidential UQ with ASPM more detail, the flowchart are summarized
as in Fig. 1.

6. Case study

6.1. Three degree-of-freedom (DOF) system

The three DOF system (Fig. 2) is excited by white noise with PSD
intensity 𝑆0 = 0.001574 m2∕s3. All the nodes have the same nominal
mass 𝑀𝑖 = 104 kg and nominal stiffness 𝐾𝑖 = 16 000kN∕m (𝑖 = 1, 2, 3).
The damping ratio for all the modes is assumed 𝜉 = 0.05. The variance
of the horizontal displacement of the third node 𝐷𝑢3𝑢3 (𝑡) is considered
response quantities of interest. The uncertain information of stiffness K
and lumped mass of nodes M is presented in Table 1.
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Fig. 4. Variation of the mean relative error with an increment in the number
of sub-intervals.

Using the information provided in Table 1, the joint uncertain input
𝜶I
𝑞 is consolidated by the Cartesian product as follows:

𝜶I
𝑞 = [𝐾 I

𝑗1
,𝑀 I

𝑗2
]T 𝑚𝑞 = 𝑚𝑗1 × 𝑚𝑗2

𝑗1 ∈ ∀[1, 3] 𝑗2 ∈ ∀[1, 4] 𝑞 ∈ ∀[1, 12], (39)

where ∑12
𝑞=1𝑚𝑞 = 1. When the joint focal element of design variable

𝜶I
𝑞 is substituted into the framework of evidential UQ, the gradient of

each variable for joint focal element 𝐴𝑞
(

𝛼𝑛, 𝑡
)

is obtained using Eq. (15).
The gray lines shown in Fig. 3(a)–(b), in which (a) stiffness K and (b)
lumped node mass M, are the gradients of the 𝐷𝑢3𝑢3 (𝑡) of each joint focal
element for uncertain parameters. The red lines in Fig. 3(a)–(b) denote
the evidential sensitivity index A (𝛼𝑛, t) computed by Eq. (23).

As shown in Fig. 3(a), the gradient value of stiffness K is negative,
which indicates that an increment of stiffness K produces a negative
decrement of 𝐷𝑢3𝑢3 (𝑡) in the time history. Meanwhile, Fig. 3(b) illustrates
that lumped mass M produces a positive impact on 𝐷𝑢3𝑢3 (𝑡) in the
time history. When Eq. (24) is used, the values of 𝐴̃ (𝐾) and 𝐴̃ (𝑀)
are calculated as 0.5 and 0.5, respectively, thereby indicating that the
contributions of stiffness and lumped mass are important. In accordance
with the aforementioned sensitivity analysis results, the focal elements
of K and M shall be decomposed into sub-intervals. The initial value of
a sub-interval is set as 𝑅𝑛 = 1, and the threshold value of convergence
factor 𝜀thre is 1%. The relative error values of the lower and upper
bounds of expectation

{

𝐷𝑢3𝑢3 (𝑡)
}0.5

in the time history are used to
denote the convergence condition.

𝜀
{

(

𝐷𝑢3𝑢3

)0.5
}

=
|

|

|

|

|

(

𝐷𝑢3𝑢3

)0.5

2𝑅𝑛

−
(

𝐷𝑢3𝑢3

)0.5

𝑅𝑛

|

|

|

|

|

/(

𝐷𝑢3𝑢3

)0.5

2𝑅𝑛

× 100%, (40)

𝜀
{

(

𝐷𝑢3𝑢3

)0.5
}

=
|

|

|

|

|

(

𝐷𝑢3𝑢3

)0.5

2𝑅𝑛

−
(

𝐷𝑢3𝑢3

)0.5

𝑅𝑛

|

|

|

|

|

/(

𝐷𝑢3𝑢3

)

2𝑅𝑛
× 100%, (41)

max
[

𝜀
{

(

𝐷𝑢3𝑢3

)0.5
}

, 𝜀
{

(

𝐷𝑢3𝑢3

)0.5
}]

≤ 𝜀thre, (42)

where
(

𝐷𝑢3𝑢3

)0.5

𝑅𝑛
and

(

𝐷𝑢3𝑢3

)0.5

2𝑅𝑛
are the UQ results of the component of

joint focal element 𝜶I
𝑞 , which is divided into 𝑅𝑛 and 2𝑅𝑛 sub-intervals.

The variations of 𝜀̃ with the increased number of sub-intervals are shown
in Fig. 4.

As shown in Fig. 4, convergence factor 𝜀̃ gradually approximates
threshold value 𝜀thre along with an increment in the number of sub-
intervals. 𝜀̃

{

(

𝐷𝑢3𝑢3

)0.5
}

and 𝜀̃
{

(

𝐷𝑢3𝑢3

)0.5
}

are smaller than thresh-
old value 𝜀thre when the number of sub-intervals increases to four.
That is, the propagation results obtained using ASPM with four sub-
intervals can be adopted to represent the UQ results of this problem.

Fig. 5. Comparison of the cumulative distribution of 𝐷𝑢3𝑢3 (4 s) obtained using
ASPM and MC simulation with 105 samples.

Fig. 6. Comparison of the upper and lower bounds of
(

𝐷𝑢3𝑢3

)0.5 in the time
history obtained using ASPM and MC simulation with 105 samples.

To test the precision of the proposed ASPM, the result obtained via
MC simulation is used as the reference. The MC simulation with 105

samples are implemented to search for the maximum and minimum
system responses that correspond to each joint focal element 𝜶I

𝑞 . After
the propagation of uncertainties, the CPF and CBF for different threshold
values are constructed by using Eqs. (34) and (35). Fig. 5 shows the
evidential UQ results obtained via ASPM with four sub-intervals and the
results computed via MC simulation at 4 s. To present the quantitative
comparison of the accuracy of ASPM, Table 2 summarizes the lower
and upper bounds and the relative error of the expectation of 𝐷𝑢3𝑢3 (𝑡)
with 0.5 exceedance probabilities for four sub-intervals at 4 s. The
comparison of the presented ASPM and the reference of the 𝐷𝑢3𝑢3 (𝑡)
with 0.5 exceedance probabilities in the entire time history is shown in
Fig. 6.

As shown in Fig. 5, the CPF and CBF curves of 𝐷𝑢3𝑢3 (4 s) obtained
via ASPM with four sub-intervals match well with the results obtained
via MC with 105 sample numbers, thereby indicating that the proposed
ASPM provides high precision for estimating 𝐷𝑢3𝑢3 (4 s). The same
scenario is reflected in Fig. 6, in which the proposed ASPM yields an
accurate approximation of the time history curves of the lower and
upper bounds of 𝐷𝑢3𝑢3 (𝑡), which is calculated via MC simulation with
105 samples. In accordance with the situation reflected in Table 2, the
maximum errors for the lower and upper bounds of

(

𝐷𝑢3𝑢3

)0.5
are

0.663% and 0.717%, respectively. This finding demonstrates that the
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Fig. 3. First-order sensitivities of 𝐷𝑢3𝑢3 (𝑡) with respect to the parameters: (a) stiffness K and (b) lumped mass M.

Table 2
Comparison of the lower and upper bounds of

(

𝐷𝑢3𝑢3

)0.5 obtained using ASPM and MC with 105 samples.
T (s) ASPM (×10−5 m2) MC (×10−5 m2) Relative errors (%)

4.0 Lower bound 1.048 1.055 0.663
Upper bound 1.524 1.535 0.717

proposed ASPM exhibits high precision in searching for the boundary
system response of the joint focal element.

6.2. Plane truss

As shown in Fig. 7, two bay plane trusses with 27 bars and 18
nodes are presented to investigate the performance of the ASPM-based
evidential UQ method. The Young’s modulus, cross section, and material
density of the truss elements, and the lumped node mass are assumed as
uncertain variables. The nominal values of the Young’s modulus𝐸0 =
2.1 × 1011 N∕m2, cross section 𝐴0 = 5 × 10−4 m2, material density
𝜌0 = 7800 kg∕m3, and lumped mass 𝑀0 = 500 kg are assumed in
the UQ process. The focal element sets and the corresponding belief
structures of uncertain variables are collocated in Table 3. Rayleigh
damping 𝐂 (𝜶) = 𝑐0𝐌 (𝜶) + 𝑐1𝐊 (𝜶) is assumed to denote the damping
matrix, and the damping ratios 𝑐0 and 𝑐1 are given by assuming the
mode damping ratio 𝜉 = 0.05 for the first and second modes. In this
study, the Kanai–Tajimi model designated in [32] is used to denote the
stochastic input 𝑆𝑓𝑓 (𝜔) of the system:

𝑆𝑓𝑓 (𝜔) = 𝑆0
4𝜍2𝑔𝜔

2
𝑔𝜔

2 + 𝜔4
𝑔

(

𝜔2
𝑔 − 𝜔2

)2
+ 4𝜍2𝑔𝜔2

𝑔𝜔2
, (43)

where the constant PSD intensity of the bed rock 𝑆0 = 0.05 m2∕s3, the
efficient damping ratio of the ground 𝜉𝑔 = 0.6, and ground frequency
𝜔𝑔 = 4𝜋 rad∕s. To reflect the intensity variation based on time, the
following uniform modulate function is used:

𝑔 (𝑡) = 𝜶
(

𝑒−𝛽1𝑡 − 𝑒−𝛽2𝑡
)

, (44)

where 𝛽1 = 2.5 and 𝛽2 = 2.7 are the attenuation ratios of the stationary
section, and 𝜶 = 35.33 is the intensity ratio. In this study, the variance
of the horizontal displacement response of node 10 in time history
𝐷𝑢10𝑢10 (𝑡) is considered the response quantity of interest.

Using the uncertain information given in Table 3, the joint focal
elements and corresponding belief structures of uncertain design vectors
can be constructed using the Cartesian product.

𝜶I
𝑞 = [𝐸I

𝑗1
, 𝐴I

𝑗2
, 𝜌I𝑗3 ,𝑀

I
𝑗4
] 𝑚𝑞 =

4
∏

𝑛=1
𝑚𝑗𝑛

𝑗1 ∈ ∀[1, 4] 𝑗2 ∈ ∀[1, 2] 𝑗3 ∈ ∀[1, 2] 𝑗4 ∈ ∀[1, 3] (45)

Fig. 7. Layout of the 27 bar trusses.

where ∑36
𝑞=1𝑚𝑞 = 1. When the joint focal element of design variable

𝜶𝑞 is substituted into the framework of evidential UQ, the gradient
of each variable for joint focal element 𝐴𝑞

(

𝜶𝑛, 𝑡
)

are obtained using
Eq. (16). The gray lines shown in Fig. 8(a)–(d) are the gradients of
the 𝐷𝑢10𝑢10 (𝑡) of each joint focal element for uncertain parameters, such
as (a) Young’s modulus E, (b) truss element cross section A, (c) truss
element material density 𝜌, and (d) lumped node mass M. The red lines
in Fig. 8(a)–(d) denote the evidential sensitivity index A (𝜶𝑛, t) of the
four aforementioned variables.
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Table 3
Focal elements and belief structures of the variables.

E (×1011 N/m2) A (×10−4 m2) 𝜌 (kg/m3) M (kg)

Focal element BBA Focal element BBA Focal element BBA Focal element BBA

[1.785, 2.1] 0.2 [4.5, 5.0] 0.5 [7020, 8190] 0.5 [400, 450] 0.15
[1.89, 2.205] 0.6 [5.0, 5.5] 0.5 [7800, 8580] 0.5 [450, 550] 0.7
[2.205, 2.415] 0.2 [550, 600] 0.15

Fig. 8. First-order sensitivities of 𝐷𝑢10𝑢10 to the parameters: (a) Young’s modulus E, (b) truss element cross section A, (c) truss element material density 𝜌, and (d)
lumped node mass M. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

As shown in Fig. 8(a) and (b), the gradient values of Young’s modulus
E and cross section A are negative, thereby indicating that an increment
in Young’s modulus E and cross section A produces a negative decrement
of 𝐷𝑢10𝑢10 (𝑡) in the time history. Evidently, Fig. 8(c) and (d) demonstrate
that the material density of truss elements 𝜌 and the lumped mass of
nodes M exert a positive impact on 𝐷𝑢10𝑢10 (𝑡) in the time evolution
history. To utilize the feasibility for reducing computational cost, the
nominal sensitivity index of the time history is calculated using Eq. (24).
The bars in Fig. 9 indicate the nominal sensitivity indices of variables E,
A, 𝜌, and M.

The nominal values of the four aforementioned variables presented
in Fig. 9 for the nominal sensitivity values of variables E, A, 𝜌, and
M are 0.3333, 0.3333, 0.0195, and 0.3138, respectively. The influence
of variable 𝜌 can be disregarded compared with the contributions of
variables E, A, and M based on the critical information indicated in
Fig. 9. The information presented in this figure provides the evidence to
tailor the unimportant variable in the UQ process. In consideration of
this scenario, the focal elements of variable 𝜌 shall remain intact whereas
the focal elements of the other components in vector 𝜶I

𝒒 shall be divided
into several sub-intervals.

Fig. 9. Nominal sensitivity indices of the time history for variables E, A, 𝜌, and
M.

Prior to uncertainty propagation, the initial value of the sub-interval
and the threshold value of the convergence condition are set to same
values as those in Case 1. In this case, the mean values of the relative
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Fig. 10. Variation of the mean relative error with an increment in the number
of sub-intervals.

Fig. 11. Comparison of the cumulative distribution of 𝐷𝑢10𝑢10 (𝑡) provided by
ASPM and SPM at 0.5 s.

error of the lower and upper bounds of expectation in the time history
𝜀̃
{

(

𝐷𝑢10𝑢10

)0.5
}

and 𝜀̃
{

(

𝐷𝑢10𝑢10

)0.5
}

are used to denote the conver-
gence condition. The variations of 𝜀 with an increment in the number
of sub-intervals are shown in Fig. 10.

As shown in Fig. 10, the convergence factor 𝜀̃ gradually approximates
the threshold value 𝜀thre along with the increment in the number of sub-
intervals. The values of 𝜀 of the lower and upper bounds of

(

𝐷𝑢10𝑢10

)0.5

are smaller than the threshold value 𝜀thre when the number of sub-
intervals increases to 8. That is, the propagation result obtained via
ASPM with eight sub-intervals can be used to solve the result in the
evidential UQ of 𝐷𝑢10𝑢10 (𝑡). To test the feasibility and efficiency of the
tailored strategy, the classical SPM analysis for evidential propagation is
presented. In SPM, the four components of focal element 𝜶𝑞 are divided
into eight sub-intervals. The BCDF is implemented to construct the CPF
and CBF of designated threshold values. Fig. 11 presents the comparison
of the CPF and CBF curves of 𝐷𝑢10𝑢10 (𝑡) in the 0.5 s time cut provided by
ASPM and SPM.

Fig. 11 depicts that the CPF and CBF curves of 𝐷𝑢10𝑢10 (𝑡) at 0.5 s
provided by ASPM coincide with the results obtained by SPM. This
finding indicates that the computational accuracies of ASPM and SPM
are nearly equivalent. In addition to the comparison at the designated
time cut, Fig. 12 describes the computational accuracy of ASPM in the
entire time history by comparing the time evolutions of the lower and
upper bounds of (𝐷𝑢10𝑢10 )

0.5 computed by SPM. Meanwhile, Table 4

Fig. 12. Comparison of the upper and lower bounds of (𝐷𝑢10𝑢10 )
0.5 in the time

history obtained via ASPM and SPM.

summarizes the comparison of the computational results obtained via
ASPM and the classical SPM with eight sub-intervals, which correspond
to the relative errors at 0.5, 1.25, 1.75 and 2.25 s.

As illustrated in Fig. 12, the lower and upper bounds of
(

𝐷𝑢10𝑢10

)0.5

ASPM
in the time history curves obtained via ASPM match well

with the results obtained via SPM. That is, the accuracy of ASPM is
always guaranteed. The same tendency is observed in Table 4, where the
computational results computed via ASPM match well with the results
obtained via SPM, and the relative error is limited and lower than 0.5%.
Although the relative error is gradually increased with an increment in
time history, the computational results are ignored compared with the
maximum value in the time history. Critical information is also reflected
in Figs. 11 and 12 and Table 4. The influence of component 𝜌 on 𝐷𝑢10𝑢10
is insignificant, and thus, can be neglected.

Evidence theory has always been used to deal with sparse and multi-
source uncertainties. The distance between the CPF and CBF curves
is used to denote the epistemic uncertainty of system response. BBA
progressively approaches the continuous probability distribution with
increasing uncertain information according to the intuitive observation
of evidence theory [42–44]. That is, a decrease in epistemic uncertainty
in system response is accompanied by the accumulation of the uncertain
information of system input. However, the collection of uncertain
information remains a challenging task because of the high cost and
time consumption. The basic concept of sensitivity analysis suggests that
the most important variable will produce the most essential changes in
uncertain system response. To validate the effectiveness of the proposed
sensitivity procedure, the completed evidential representations of vari-
ables E, A, 𝜌, and M are presented in Table 5.

The validation procedure consists of five analogous cases. In the
first case, the evidential representation of Young’s modulus is fixed as
Table 3, whereas the uncertain information of cross section A, material
density 𝜌, and lumped node mass M are signified by the evidential
representations in Table 5. The propagation results CPF1 and CPF2 are
shown in Fig. 13(a). The UQ results of CPF2 and CBF2 in Fig. 13(b)
correspond to the evidential representation of the UQ results for the
fixed variable cross section A, as shown in Table 3. However, the
evidential representations of the other variables are updated, as shown
in Table 5. The CPF3, CBF3, CPF4, and CBF4 as shown in Fig. 13(c) and
(d) are obtained by fixing variables 𝜌 and M, respectively. The CPF5
and CBF5 curves in Fig. 13 are obtained by updating the evidential
representations of the four variables, as shown in Table 5. The evidential
UQ results CPF0 and CBF0 in Fig. 13 are computed using the original
uncertain information given in Table 3.

As shown in the four subfigures of Fig. 13, the distances of the
CPF5 and CBF5 curves are significantly decreased compared with the
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Table 4
Comparison of the lower and upper bounds of

(

𝐷𝑢10𝑢10

)0.5 obtained via ASPM and SPM at different time cuts.
T (s) Lower bound Upper bound

ASPM (×10−6 m2) SPM (×10−6 m2) Relative errors (%) ASPM (×10−6 m2) SPM (×10−6 m2) Relative errors (%)

0.5 1.551 1.551 0.015 3.780 3.782 0.063
1.25 0.370 0.370 0.106 1.076 1.077 0.160
1.75 0.070 0.070 0.172 0.232 0.233 0.239
2.25 0.011 0.011 0.234 0.040 0.040 0.327

Table 5
Focal elements and belief structures of the variables.

E (×1011 N/m2) A (×10−4 m2) 𝜌 (kg/m3) M (kg)

Focal element BBA Focal element BBA Focal element BBA Focal element BBA

[1.780, 1.943] 0.1 [4.500, 4.625] 0.1 [7020, 7332] 0.125 [400, 425] 0.075
[1.943, 2.100] 0.1 [4.625, 4.750] 0.1 [7332, 7605] 0.125 [425, 450] 0.075
[1.890, 1.995] 0.15 [4.750, 4.875] 0.15 [7605, 7800] 0.125 [450, 475] 0.175
[1.995, 2.100] 0.15 [4.875, 5.000] 0.15 [7800, 8190] 0.125 [475, 500] 0.175
[2.100, 2.153] 0.15 [5.000, 5.125] 0.15 [7410, 7722] 0.125 [500, 525] 0.175
[2.153, 2.205] 0.15 [5.125, 5.250] 0.15 [7722, 7995] 0.125 [525, 550] 0.175
[2.205, 2.310] 0.1 [5.250, 5.375] 0.1 [7995, 8268] 0.125 [550, 575] 0.075
[2.310, 2.415] 0.1 [5.375, 5.500] 0.1 [8268, 8580] 0.125 [575, 600] 0.075

Fig. 13. Comparison of the cumulative distribution of 𝐷𝑢10𝑢10 (0.5 s) for different combinations of focal elements fixed by (a) the uncertain information of Young’s
modulus E, (b) the uncertain information of the cross section of the truss element A, (c) the uncertain information of material density 𝜌, and (d) the uncertain
information of the lumped node mass M.

distances of the CPF0 and CBF0 curves, thereby demonstrating that
epistemic uncertainty is gradually diminished because of the collection
of uncertain information for each uncertain parameter. In particular,
Fig. 13(c) shows that the cumulative curves obtained by fixing the
material density of the truss element 𝜌 coincide with the cumulative
curves obtained by updating all the variables. This finding indicates that
the epistemic uncertainty rooted in the material density of truss element

𝜌 have minimal influence on the epistemic uncertainty associated with
𝐷𝑢10𝑢10 (0.5 s), and thus, can be ignored in the UQ process. That is,
the epistemic uncertainty involved in the variation of 𝐷𝑢10𝑢10 (0.5 s) is
mainly contributed by the variation of Young’s modulus E, the cross
section of the truss element A, and lumped node mass M. To validate the
effectiveness of the proposed sensitivity analysis in the time evolution
history, the (𝐷𝑢10𝑢10 )

0.5 is applied as shown in Fig. 14.
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Fig. 14. Upper and lower bounds of the time history of (𝐷𝑢10𝑢10 )
0.5.

As shown in Fig. 14, the variation tendency of the enveloped area
produced by different couplings of the CPF and CBF curves is consistent
with the variation shown in Fig. 13. When the character of the linear
system is considered, the variation of an enveloped area is fixed. Figs. 13
and 14 show that the material density of the truss element 𝜌 is less
important than uncertain parameters E, A, and M. On the basis of
the sensitivity results of the proposed sensitivity analysis method, the
proposed method is determined to be feasible and effective.

7. Conclusions

This work is presented to investigate the influence of structural
epistemic uncertainty on structural dynamic response under stochastic
excitation by introducing evidence theory into the UQ framework.
Evidence theory is used to model epistemic uncertainties rooted in
structural variables. To overcome the computational bottleneck of the
evidential propagation process, an adaptive strategy is used in the sub-
interval perturbation method using the first-order Taylor expansion
series to evaluate the lower and upper bounds of system response by
considering the exponential increment of the joint focal element in
complex and large-scale engineering problems. The dimension of an
uncertain system input is effectively reduced by applying sensitivity
analysis. The cumulative distribution for the belief structure of system
response is constructed to evaluate the uncertainty level in system
response under stochastic excitation using the BCDF concept. Numerical
examples illustrate that the UQ results obtained via ASPM exhibit
more prominent convergence and accuracy compared with the results
obtained via the classical SPM and MC simulation. Compared with
the classical SPM, the calculation efficiency of the proposed ASPM
evidently improves with a slight decrease in computational accuracy.

The efficiency of the presented sensitivity analysis is also validated by
comparing the epistemic involved in system response under sparse and
abundant data.
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